

DESCRIPCIÓN DE CARACTERÍSTICAS

TORNILLERÍA

Versión 04 (01/2023)

Índice

1.	Torr	nillo FER TF	3
,	1.1	Descripción	3
,	1.2	Material	3
,	1.3	Capacidades	4
,	1.4	Durabilidad	10
	1.5	Dimensiones	10
2.	Araı	ndela FER AF	12
	2.1	Descripción	12
;	2.2	Material	12
;	2.3	Durabilidad	13
;	2.4	Dimensiones	13
3	Тор	pe espesor GR	14
;	3.1	Descripción	14
;	3.2	Material	14
,	3.3	Dimensiones	14
4	Torr	nillería Normalizada	16

1. Tornillo FER TF

global building solutions

1.1 Descripción

Tornillo con cabeza de martillo especial para trabajar con perfil NOXI. Se utilizan para la retención de elementos de hormigón.

1.2 Material

La calidad del tornillo FER TF es acero 5.6 cuyas propiedades mecánicas son las siguientes según ISO 898-1:2015:

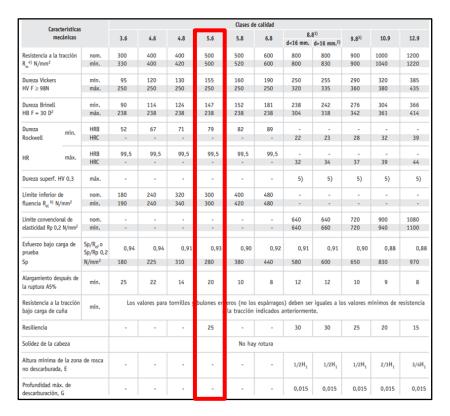


Tabla 1.1 Propiedades mecánicas del acero 5.6

R_m=500Mpa

R_e=300Mpa

1.3 Capacidades

Hay dos tipos de tornillo FER. Uno de métrica 12 (TF12) y otro de métrica 16 (TF16) y ambos tienes resistencias a tracción y cortante diferentes.

Cada uno de estos tornillos tiene una carga máxima a tracción y cortante. Además, estas cargas no se pueden dar a la vez en sus valores máximos por lo que existe una comprobación para la combinación de acciones en los tornillos.

Cálculos realizados según tabla 3.4 de la UNE EN 1993-1-8.

$$\frac{F_{v,Ed}}{F_{v,Rd}} + \frac{F_{t,Ed}}{1,4 \cdot F_{t,Rd}} \le 1$$

Dónde:

F_{v,Ed}= Valor dela fuerza a cortante aplicada (N)

F_{v,Rd}= Resistencia máxima a cortante de la sección (N)

F_{t,Ed}= Valor de la fuerza a tracción aplicada (N)

F_{t,Rd}= Resistencia máxima a tracción de la sección (N)

·El tornillo FER TF12 tiene una resistencia según tabla 3.4 de la UNE EN 1993-1-8:

- una resistencia a la tracción ($F_{t,Rd}$) de 30300N, que es lo mismo $\,$ que 3030Kg
- -una resistencia a cortante ($F_{\nu,Rd}$) de 20200N, que es lo mismo que 2020Kg

·El tornillo FER TF16 tiene una resistencia según tabla 3.4 de la UNE EN 1993-1-8:

- una resistencia a la tracción ($F_{t,Rd}$) de 52700N, que es lo mismo $\,$ que 5720Kg
- -una resistencia a cortante ($F_{v,Rd}$) de 35000N, que es lo mismo que 3500Kg

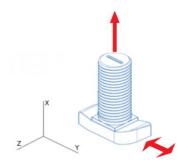


Figura 1.1 Esquema de acciones tornillo FER

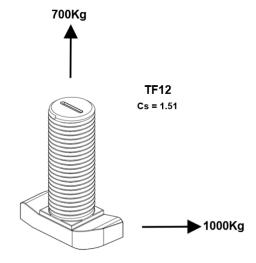
El tornillo FER puede trabajar a esfuerzo axial (eje X) y a esfuerzo cortante (eje Y).

Las cargas admisibles que puede suportar el sistema dependen de los elementos que lo conforman. En las tablas siguientes se pueden ver los coeficientes de seguridad con los que trabaja el tornillo en condiciones de combinación de cargas (tracción + cortante).

TF12

PIEZA	MATERIAL	CARGA AXIAL MÁXIMA ADMISIBLE "Qadm" (kg)	CARGA CORTANTE MÁXIMA ADMISIBLE "Qadm" (kg)	Cs ⁽¹⁾
Tornillo FER TF12	Calidad 5.6	3030 ⁽³⁾	2020 ⁽³⁾	-
Perfil NOXI C	S235JR	700 ⁽²⁾	1000 ⁽²⁾	1,51
Perfil NOXI R	S235JR	1000(2)	1000(2)	1,36

TF16


PIEZA	MATERIAL	CARGA AXIAL MÁXIMA ADMISIBLE "Qadm" (kg)	CARGA CORTANTE MÁXIMA ADMISIBLE "Qadm" (kg)	Cs ⁽¹⁾
Tornillo FER TF16	Calidad 5.6	5270 ⁽³⁾	3500 ⁽³⁾	-
Perfil NOXI C	S235JR	700 ⁽²⁾	1000 ⁽²⁾	2,68
Perfil NOXI R	S235JR	1000 ⁽²⁾	1000(2)	2,37
Perfil NOXI S	S235JR y S275JR	1800 ⁽²⁾	1800 ⁽²⁾	1,31

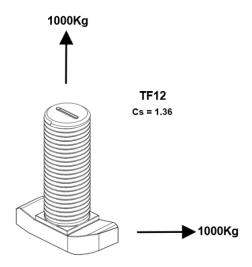
⁽¹⁾ Coeficiente del tornillo FER TF calculado aplicando la combinación de las cargas máximas de cada perfil

global building solutions

-TF12 y NOXI C

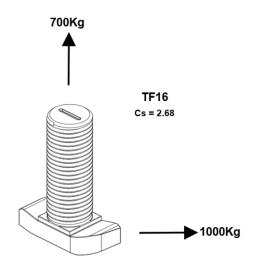
En el sistema de tornillo FER 12 y perfil NOXI C el elemento que limita la carga axial es el propio perfil ya que tiene un valor admisible menor que el del tornillo, es decir que este conjunto soportará un máximo de 700Kg a tracción. Este mismo conjunto a cortante tiene una capacidad para suportar 1000Kg. En el caso de la combinación de estas dos cargas el tornillo trabajaría adecuadamente y con un coeficiente de seguridad de 1,51

⁽²⁾ Valor característico de la acción (ELS) < Carga máxima admisible "Qadm"

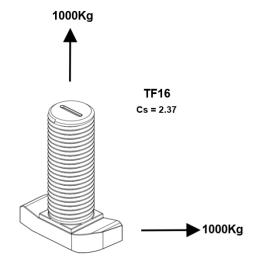

⁽³⁾ Resistencia máxima de la sección

-TF12 y NOXI R

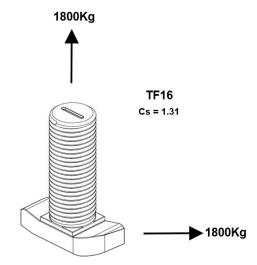
En el sistema de tornillo FER 12 y perfil NOXI R el elemento que limita la carga es el propio perfil ya que tiene un valor admisible menor que el del tornillo, es decir que este conjunto soportará un máximo de 1000Kg a tracción y 1000Kg a cortante. En el caso de la combinación de cargas con estas dos últimas aplicadas a la vez, el tornillo trabajaría con un coeficiente de seguridad de 1,36.


*No se da el caso del tornillo FER-12 con el perfil NOXI S ya que en esta combinación el tornillo no puede suportar las cargas máximas del perfil y por eso se suele poner un FER-16 directamente.

-TF16 y NOXI C


En el sistema de tornillo FER 16 y perfil NOXI C el elemento que limita la carga es el propio perfil ya que tiene un valor admisible menor que el del tornillo, es decir que este conjunto soportará un máximo de 700Kg a tracción y 1000Kg a cortante. En el caso de la combinación de cargas con estas dos últimas aplicadas a la vez, el tornillo trabajaría con un coeficiente de seguridad de 2,68.

-TF16 y NOXI R


En el sistema de tornillo FER 16 y perfil NOXI R el elemento que limita la carga es el propio perfil ya que tiene un valor admisible menor que el del tornillo, es decir que este conjunto soportará un máximo de 1000Kg a tracción y 1000Kg a cortante. En el caso de la combinación de cargas con estas dos últimas aplicadas a la vez, el tornillo trabajaría con un coeficiente de seguridad de 2,37.

-TF16 y NOXI S

En el sistema de tornillo FER 16 y perfil NOXI S el elemento que limita la carga es el propio perfil ya que tiene un valor admisible menor que el del tornillo, es decir que este conjunto soportará un máximo de 1800Kg a tracción y 1800Kg a cortante. En el caso de la combinación de cargas con estas dos últimas aplicadas a la vez, el tornillo trabajaría con un coeficiente de seguridad de 1,31.

1.4 Durabilidad

El acabado estándar del tornillo FER es en cincado electrolítico según la normativa EN ISO 2081.

Posibilidad de fabricar en diferentes acabados. En tal caso consultar con departamento técnico de NOXIFER.

1.5 Dimensiones

Tornillo FER TF12

PIEZA	DESCRIPCIÓN	L (mm)
TF12-40	Tornillo FER M12 long. total 50	40
TF12-50	Tornillo FER M12 long. total 60	50
TF12-70	Tornillo FER M12 long. total 80	70

"L" es la longitud roscada del tornillo.

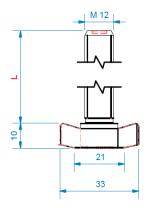


Figura 1.2 Dimensiones TF12

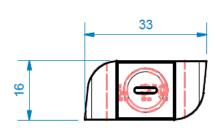


Figura 1.3 Dimensiones TF12

Tornillo FER TF16

PIEZA	DESCRIPCIÓN	L (mm)
TF16-40	Tornillo FER M16 long. total 50	40
TF16-50	Tornillo FER M16 long. total 60	50
TF16-60	Tornillo FER M16 long. total 70	60
TF16-70	Tornillo FER M16 long. total 80	70
TF16-80	Tornillo FER M16 long. total 90	80
TF16-90	Tornillo FER M16 long. total 100	90
TF16-100	Tornillo FER M16 long. total 110	100
TF16-110	Tornillo FER M16 long. total 120	110
TF16-120	Tornillo FER M16 long. total 130	120
TF16-140	Tornillo FER M16 long. total 150	140
TF16-220	Tornillo FER M16 long. total 230	220

"L" es la longitud roscada del tornillo.

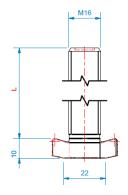


Figura 1.4 Dimensiones TF16

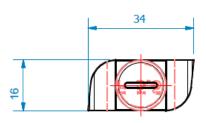


Figura 1.5 Dimensiones TF16

2. Arandela FER AF

global building solutions

2.1 Descripción

Arandela cuadrada con una de las superficies dentada para conseguir una unión antideslizante con algunos accesorios de retención (COFI, UPA, UPA-C, OCULFIX30 y OCULFIX40).

Con el accesorio UPA-C es necesario utilizar la arandela FER AF8/16.

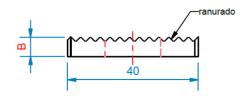
2.2 Material

La arandela FER AF está fabricada a partir de chapas de acero estructural S275JR. Se trata de un acero apto para soldadura, plegado y mecanizado.

Las propiedades mecánicas del acero según el Código Estructural son las siguientes:

	Espesor nominal t (mm)				
Tipo	<i>t</i> ≤ 40		40 < <i>t</i> ≤80		
	f_{y}	f _u	f _y	f _u	
S 235	235	360 <f<sub>u<510</f<sub>	215	360 <f<sub>u<510</f<sub>	
S 275	275	430 <f<sub>u<580</f<sub>	255	410 <f<sub>u<560</f<sub>	
S 355	355	490 <f<sub>u<680</f<sub>	335	470 <f<sub>u<630</f<sub>	
S 450	450	550 <f<sub>u<720</f<sub>	410	530 <f<sub>u<700</f<sub>	

Tabla 2.1 Extracto del Artículo 83 del Capítulo 18 del Código Estructural



2.3 Durabilidad

El acabado estándar del tornillo FER es en cincado electrolítico según la normativa EN ISO 2081.

Posibilidad de fabricar en diferentes acabados. En tal caso consultar con departamento técnico de NOXIFER.

2.4 Dimensiones

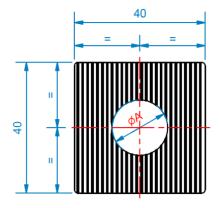


Figura 2.1 Dimensiones arandela FER AF

PIEZA	DESCRIPCIÓN	A (mm)	B (mm)
AF6/12	Arandela FER espesor 6mm	13	6
AF6/16	Arandela FER espesor 6mm	17	6
AF8/16	Arandela FER espesor 8mm	17	8

3 Tope espesor GR

3.1 Descripción

Elemento en forma de U para la regulación del sistema con el anclaje OCULFIX10. La función de este elemento es permitir el apriete de la tuerca sin mover el elemento a retener. De esta manera se puede dejar la arandela glower plana sin tensar el tornillo FER en exceso.

3.2 Material

El tope de espesor GR está fabricado a partir de poliamida 6 (PA6). La PA6 se caracteriza por una buena tenacidad y un fácil procesamiento. Generan piezas con una buena capacidad de amortiguación, que también son muy resistentes al impacto.

3.3 Dimensiones

El tope de espesor GR está disponible en 4 medidas estándar (GR3, GR5, GR10 y GR15) cuyas dimensiones son:

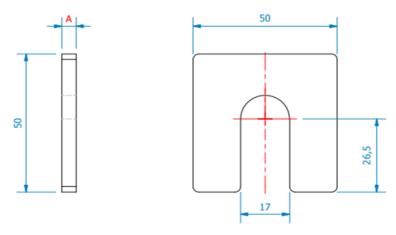


Figura 3.1 Dimensiones tope de espesor GR

PIEZA	DESCRIPCIÓN	A (mm)
GR3	Tope de espesor 3mm	3
GR5	Tope de espesor 5mm	5
GR10	Tope de espesor 10mm	10
GR15	Tope de espesor 15mm	15

4 Tornillería Normalizada

NOXIFER también puede proporcionar algunos elementos normalizados como tuercas, arandelas y arandelas Glower.

DIEZA	DESCRIPCIÓN	ACABADO		
PIEZA	DESCRIPCION	Cinc.	lnox.	Galva.
T12	Tuerca métrica 12	Х	-	Х
T16	Tuerca métrica 16	Х	Х	Х
A12	Arandela para tornillos M 12	Х	Х	-
A16	Arandela para tornillos M 16	Х	Х	-
AG12	Arandela Glower para tornillos M 12	Х	Х	Х
AG16	Arandela Glower para tornillos M 16	Х	Х	Х

